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In the case of absence of surface loads the analysis of circular 
cylindrical shells can be reduced [ 1 ] to the problem of solving the 
equation 

a*0 
(1 -I- 4q -gj f 4 (f + aa) & -f- [6 f aa (1 - @If &d -I- 4 a;;0 

as0 
------T+m + 

a40 
+(8-2d)~+8~*+20~+(f-52)(~i4)~~*+4~~+ w=O 

where a2 = h2/3r2 (2h is the thickness of the shell, r is the radius of 
the shell), while @ is a potential function. 

The displacements of the middle surface of the shell can be expressed 
in terms of the function @ by means of the formulas 

Substituting u, vI w into the geometric relations 

and then into the elasticity relations 
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T1 = l$a fel -I- oe,), Tz = 
2Eh o 

s2=---- 
*+a 2 

G1= - 3*) (x1 + axz), cs = - 3$$ (x?, + 6X1), &=_H2=LE!cZ 

3(1fd 

we can express the stress resultants Tr, Tz I S1, S2 and the stress 
couples GI, G3, Hl, Hz in terms of the potential function a. From the 
equilibrium conditions 

aHl dCa -_- 
3 

ae -I-rNz=O, ag+a$_rNl=O 

we can find also the shear forces N, and N,. 

Consider a closed circular cylindrical shell. Expanding the potential 
function Q, into a trigonometric series in terms of 0 

0 = ; [tp,’ (F) cos m9 + qmv fE) sin mO 1 (6.2) 
m==ll 

we obtain for the determination of 4,’ and I#~- the same differential 
equation (omitting the primes and the subscript m) 

(1 + 4$) f$ - 4 (f + UP) m” dGg, i dsB + 
C 

&n* + & (1 - c2) m4 - (8 - 23*) mr + 

(0.3) 

Integrating this equation we obtain the mth term of the expansion 
(0.2), each item of which corresponds to a certain state of stress and 
strain in the circular cylindrical shell. Using for any BI the integrals 

9, and (Pa”, we obtain the expressions for the displacements, rotation 
angles, stress resultants and stress couples in the form of trigonometric 
series. Substituting 

vi = amp (0.4) 

into Equation (0.3) and seeking to obtain its solution in the form 

cp = A& (A = con&) (0.5) 

we obtain the characteristic equation 

(1 + 4&a) fp - 4 (1 + $) a--lPk” + 
i 

[G _+ g1‘: (1 - @)I a--** - (8 - 33) a-+ _c 

+ (t _ (T2) (-& + 4)}k* _ ‘lft-‘” (n -*P _ I)* kz + a-4r- (a+ - $)2 = 0 (0.6) 

Since the solution of Equation (0.6) and the formulas (0.1) are very 
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cumbersome, the question arises as to approximate methods of analyaing 

cylindrical shells and of estimating the inaccuracies involved in the 
use of approximate formulas. The asymptotic estimation of the roots of 
the characteristic equation is the basis for the entire theory of 
circular cylindrical shells as developed in the monograph of Gol’den- 
veizer referred to above. The author has given only the first approxima- 
tion using, as stated by himself, non-rigorous methods. The purpose of 
the present paper is to 

1. improve the accuracy and the basis of the first approximation; 

2. indicate a method for deriving successive approximations; 

3. develop an effective method for estimation of the asymptotic 
(a + 0) inaccuracy corresponding to a given order of approximation. 

These objectives will be achieved by an asymptotic analysis of the 
roots of algebraic equations with coefficients depending on a small para- 
meter a. 

1. Ou a method of asymptotic solution of some algebraic 
equations. 1. Co nsi 'd er an equation of the nth degree with respect to k: 

f(a,k)~bok~+hkn-l+...+b,k’++...+b,+lk+b, =0 (1.1) 

with coefficients br depending on a parameter a in a manner expressed by 
the formula 

b, = A@ + Ar’aap’ + . . . = a,. (a) uar (r = 0, 1, . . . I n) (1.2) 

where all Ar, Ar’, . . . are independent of a, Ar f 0 and a < ar’ < . . . . 
so that lim a,(a) = Ar f 0 when a + 0. 

r 

Definition. If a quantity B(a) can be represented in the form B(a) = 
b(a)a” and lim b(a) = B” f 0, when u + 0, then we shall call m the order 

of B. 

Thus ar represents the order of the coefficient b, of Equation (1.1). 

We start from the hypothetical form 

k = x (a) us (lim x (a) = K # Owhena +O) 

for a root of Equation (1.1). 

Since, at a sufficiently small value of a, the limit value K differs 
but little from K(U), the quantity Kas can be considered to represent, 

in first approximation, a root of Equation (1.1). 
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We concentrate first on the problem of determining s, the order of 
the root, and K, 

2. TO find a root of the equation in first approximation, we substi- 
tute into (1.11, K(U)U’ for k and the expressions (1.2) for the coeffi- 
cients br. Multiplying then the resulting equation by at, where t is a 
number to be chosen later, we obtain 

(1.3) 

Since the roots of any algebraic equation are continuous functions of 
its coefficients, K = lim K (a) at a + 0 represents a root of the limit- 
ing (at a + 0) equation, provided, of course, that these roots exist and 
differ from zero. 

We will select s and t in such a manner that the corresponding limit- 
ing equation should exist, without degenerating into an identity, and 
have non-vanishing roots, i.e. that in the coefficients of Equation (1.3) 
at least two degree exponents be equal to zero, while all other exponents 
are positive numbers. Substituting one of such pairs of values of s, t 
into (1.3), passing to the limit as a + 0 and dividing by K”- n, we ob- 
tain an equation for K: 

AJTf + A14T” + . . , + A, z?z 0. (1.4) 

Thus the problem of finding a root in first approximation reduces to 
that of finding a pair of numbers s, t and to the solution of the limit- 
ing equation (1.4) of degree m - 1, which is, in general, a simpler one 
than the original equation. 

3. For the dete~nation of s the following procedure can be used. 
With the numbers a*, aI, . . . , a,, . . . , a,,, defined by the relations 
(l-2), we construct the following table: 

u. - us a0 - a2 a* - a,, ~0 - a, 
~ - . . . 

1 2 n’ .-* re 

a1 - ax aI - a,, al-- an 
-.. * ..I 

1 m’ - 1 72-l 

. . . . . . . . ...* * . . . . . . 

a, - a,, %t-aa, . . . . . . 
m’--m n-m 

I.......... - . 

%-I - % 
1 

(1.5) 

a) In each line of this table we choose the largest number (a, - a,#)/ 

(p’ - P), and if it appears several times in that line, we choose among 
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them the one which corresponds to the largest subscript p’; 

b) In each column we choose the smallest number (aq - aq*)/(q'.- q), 
and if it appears several times in that column, we choose the one which 

corresponds to the smallest subscript q. 

It can be shown that the table (1.5) possesses the following proper- 

ties (which are being stated here without proof): 

1) Among the chosen numbers there will be such, which have to be 

selected both by virtue of the condition (a) and by virtue of the condi- 

tion (b). We shall call such numbers nodal numbers of the table. 

2) If for reasons of convenience we count the lines of the table 0 to 

n - 1 from the top to the bottom, and the columns 1 to n from the left 

to the right, then a nodal number will appear in the zero line, and the 

same is true of the column R (it can happen that these two.numbers are 

actually one and the same element of the table; in such a case this 

number is the only nodal number of the table). 

3) If the number (up - a,*)/(p’.- p), corresponding to the index p’b 

is the nodal number of the pth line, then there will be no nodal numbers 

in the (p + l)th, (p + 2)th, . . . . (p’-- 1)th lines, but the p'th line 

will have a nodal number. 

Note. It is thus not necessary to write down completely the entire 

table (1.5) in order to find the nodal numbers. It is sufficient to write 

down the line carrying the number 0 and to choose in it, according to 

condition (a), the largest number (a,, - a l)/I corresponding to a certain 

subscript 1. This will be the first nodal number 111. Then we have to 

write down the lth line and to treat it in the same way, which yields the 

second nodal number II,, and so forth. 

4) lhe nodal numbers thus obtained are decreasing: 

Ul > u2 > . . . 

5) 'Ihe desired values sl, s2, . . . of the quantity s are expressed in 
terms of the nodal numbers of the table (1.5) in the following manner: 

sl = -Ul, s2 = -uz, . . . 

4. Ihe value ti, corresponding to any value si, of the quantity t has 
to be chosen in such a manner as to render equal to zero the smallest 

degree exponent in the coefficients of Equation (1.3); there will be at 

least two such exponents, which is ascertained by a corresponding choice 

of the si values. 
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Since Kas is a root of Equation (1.1) in first approximation and since 
it differs but a little from the exact root, if only a is sufficiently 
small, the quantity as characterizes the rate of decrease (increase) of 
the root as a + 0. It is not difficult to show that the degree of the 
limiting equation (1.41, obtained for a certain si, equals q - p, the 
denominator of the nodal number (a, - ae)/(q - p), corresponding to si, 
so that the sum of the degrees of all limiting equations equals n. Thus 
all roots of Equation (1.1) can be subdivided, with respect to their 
asymptotic (as a -PO) properties, into as many groups as there are nodal 
numbers in the table (1.5). 

5. Assume that Kas represents the first approximation of a root of 

Equation (1.11, so that k = Ka’. To find the second approximation, we 
substitute K = Kas + z into (1.11, and of all approximaf;e values of Z-, 
obtained by the same method, we take the value Z = K 'as -with the power 

exponent s’ > s. It is possible to prove the existence of such a z. 

For example, the lowest term 

(term with the largest exponent) possesses this property [2 1. 

For the second approximation of the root we have 

k,_ HTlP + IL'&' 

Continuing this procedure we find that any root of Equation (1.1) can 
be written in the form of a series 

where s < s’ < scr . . . (which is sufficient for asymptotic convergence). 

Note. The problem which we have stated can be generalized to include 
the cases when a + a0 f 0 or a + 00; these problems can be reduced to 
the one considered here by introducing a new parameter 

ai =a-uo or I, 
a =I: I/a 

6. The question which we have raised here has been apparently origin- 
ally discussed by Newton, who has given a geometric method of solving the 
problem. The description of this method, the theorem proving the con- 
vergence of the procedure and some applications can be found in 
Chebotarev’ s paper [ 2 ] . Bug aev formulated this solution in analytical 

terms [3 1. The work of Newton and that of Bugaev has not become 
generally known4 however. In particular, the author of the present paper 
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became aware of them when his own work on the subject was fundamentally 
completed. It should be noted that the method developed above and based 
upon the use of the table (1.5) and its properties, achieves the purpose 
more speedily than Bugaev’s method. 

2. Estimation of the asymptotic error. 1. Taking the series 
(1.6) as a root k, and retaining in it the first two terms, we may write 

We shall call the quantity c(a) = as’-’ the asymptotic error of the 
first approximation of the root considered. 

It is often possible to avoid the necessity of establishing the 

numbers s ’ in the procedure of determining the asymptotic error. Let us 
substitute, into the left-hand member of (1. l), first approximation of 
the root Kiss, as well as the quantity Kas, considering 

meter. Let 

K as some para- 

where 

f (a, Kid) _. aqlF (a), f (a, Ka”) E a~@ (a) 

lim F (a) = F” # 0, lim 0 (a) = CD” # 0 as o-+0 

There is, in a number of cases, a simple relationship between ql, q 
and s* - s, and then the determination of s’ becomes unnecessary. Let 
us study this question. 

2. Suppose we write f(u, Ku’) in the form 

f(a,Ka”)scp(K)a*+cpl(K)aql.+(~2(K)a*1+... (q<ql<qz<...) (2.1) 

Since Kiss represents first approximation of the root ki considered, 

Ki satisfies the equation +(K) = 0, SO that we have ski) = 0. If 

a, = ~~2(Ki) = . . . = q5l_ ,(Ki) = 0, while PI # 0, then the order 
of the expression f(u, KiuS) equals qz (assuming that KiaS is not an 
exact root of the original equation, so that 1 actually exists). 

We substitute also KiaS + z into Equation (1.1): 

(2.2) 
f @, Kiu8 + 2) = $ ‘“’ ;;y*) 1 a-n-lj (a, KpS) ~ K-nsZn + (n _ I)! L3K-l 

u-_(n-l)syl-l 
+ 

1 a’/ (a, &as) 
-+“‘-Q- 8K’ 

a--tq +. . .+ 1 aj (a, &as) 
I! aK 

U-‘2 + f (U, KiU”) = 0 
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Suppose P,- t is the order of the coefficient of zt, while r is the 

multiplicity of the root Ki in the equation I = 0. ~fferentiating 

the relation (2.1) with respect to K r times, we find for the coeffi- 
cient of zr in Equation (2.2) 

Since c,b’+‘(Ki) f 0, the order of the coefficient of zr will be /3,_ = 

- rs, 
Ee p 

while, as stated already above, the order of the free term wili 

= qr(Z > 1). In th e procedure of determining from Equation (2.2) 
the iecond term Z of the series (1.6) for ki, it is necessary, as in 
Section 1, to construct a table of the type (1.51, replacing Z for the 

time being by ZM = K’usJf’ with the largest exponent sP Its nodal number 

will be 
(2.3) 

UM' =-ssv'=min 
t&-&t La-Pp, L,-PB, PO-Pp, 

I $ , 2 f'*.t r P'.'> n , 

It is possible to show f4 1 that for all zz > r 

Pn-u - Prl 
u 

> Pn-r - Pn 
r 

(2.4) 

Therefore the degree of the equation, from which 15,' is to be deter- 

mined, does not exceed r, the multiplicity of the root Ki, and 

Ehlt 

so that 

SM'> T_t$ 

Therefore the order of the asymptotic error S,'- s will not be 

smaller than (ql - q)/r, or 

s (a) = as'-S I. $M’-* < a(Gl --Q)h’ 

It must be noted, however, that in some cases the use of the lowest 

term ZM only does not permit the determination of the second approxima- 

tion for all root? of Equation (1.11, so that it becomes necessary to 
use such Z = K'aS as well, for which s < s' < SM' (the existence of 

such s' for the cases in question con be proved). 
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Then the inequality 

8 (a) = p’--8 > (pl -d/r 

will be valid for some roots, and it becomes a matter of interest to 
establish when this will be the case. 

3. a) Suppose Ki is a non-repeated root of the equation $(K) = 0. 

Then B,_ 1 - B, will be the smallest of the numbers (2.3) and 

Hence 

Q1--4 
S&=-j-+S 

E (U) = Uq’ -* us= 1) (2.5) 

b) Suppose Ki is a root, repeated r times, of the equation +(K) = 0 

and assume that all I, f 0. Ihen the relation (2.4) will be valid 
again for all u < r. Indeed, let p,_ u = qlj - us; then, with II increas- 
ing, the numbers q 1’ will not be decreasing and 

j3n-u-pn= q~‘-us-ql_ qZ’-ql _s > Q-_I_, = q-rs-ql = P,_,- p, -~ ~_ 
u. u u r r r 

Consequently 

(2.6) 

c) If Ki is a root, repeated r times, while some q&(K) vanish for 
K = Ki (speaking generally this happens quite rarely), then with u < r 
the numbers qlt may be decreasing, while u is increasing, so that there 
arise two possibilities: 

cl) ‘Ihe relationship (2.4) remains valid for all u < r, and the equa- 
tion for the determination of the lowest term 2, is of degree r. In this 
case the asymptotic error can be obtained, for each of the r roots con- 
sidered, which are equal to each other in first approximation, from the 
formula 

E (a) = &u-d/r (I 2 1) (2.7) 

c2) ‘Ihe relationship (2.4) becomes invalid for some u < r. For the 
determination of the lowest term 2, from (2.2) we have then the nodal 
number IJM’ < t/3,_ r - /3,)/r, and for Ki’ we obtain an equation of degree 
r’ < r. In this case there will be among the roots (repeated r times in 
first approximation) such ones, for which 

E (a) < ah --a)b. 
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(e.g. such roots for the second approximation of which the lowest term 
ZM is being taken). 

However, there will necessarily be some (see note at the end of this 
section) whose asymptotic error will exceed that given in (2.7); i.e. 

E (U) > a(Qt-Q)/r 

and in order to find it we will have to solve Equation (2.2) or, at 
least, to determine the nodal numbers for the latter. 

Let us use an example for illustration. Suppose we have the equation 

f (a, k)~k2-((21/~-aJf~-aSJ&)k+a-a2=0 (2.8) 

Its two roots are equal to each other in first approximation: 

Since f(a, Kal”) = (K - l)*a + (K - l)a2 + Ka4, we have p = 1, 
q1 = 2, q2 = 4. 

It is also easily seen that q, = q2 = 4. Substitute da + z into Equa- 
tion (2.8): 

z2 + (a” + a’h)z + a4 = 0 

The nodal numbers of this equation are - 3/2 and - 5/2, so that 

Hence we obtain for the roots k, and k2 

el (a) = a2 < a(4-1)/2 = aalP, e2 (a) = a > 5’12 

respectively. This can be verified by solving the quadratic equation 
(2.8) directly. 

Thus we see that the problem of determining the asymptotic error does 
not require, in the majority of cases [see (a), (b)], an analysis of 
Equation (2.2) for determination of z; it is possible to find E(U) from 
the formulas (2.5) or (2.6) starting only from the relation (2.1). In 

the particular case (c) it becomes necessary, for determination of c(a), 

to find the order s' of the second term of the series (1.6) starting 

from (2.2). 

4. 'Ihe following condition should be taken into consideration in the 

procedure of determining the second approximations for the roots of 

Equation (1.1). 
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A limiting equation of degree F a 1, where F is the multiplicity of 

Ki in the equation 4(K) = 0, is obtained in the,cases (a), (b), (cl) for 

the determination of the lowest term ZM= Ki’as w We note that sIy* > s. 
The remaining Sk', obtained for Equation (2.2), will not be larger than 

S(Sk' < s), which can be easily shown starting from the properties of 

the table (1.5) for the numbers PO, pl, . . . . 8,. 

In the case (~2) the lowest term ZM is being determined from an equa- 

tion of degree F’ < r, so that such a ZM does not permit us to obtain 
the second approximation for all F of the roots which are equal to each 

other in first approximation. For F - F; roots we have to take, as seen 

from the given example, such Zj'= Kj’as j as well, where sj' does not 

represent the largest power exponent. Starting, however, from the pro- 

perties of the table (1.5) it can be shown that in addition to sg there 

will be such s.’ > s, and to them, together with sM' correspond limiting 

equations of digrees the sum of which is equal to F, while all remaining 

'k l < s. 

'l$us we arrive at the following conclusion: for the determination of 

K’aS , the second term of the series (1.6), we have to use all s' > S. 

Ibis ascertains the derivation of the second approximation for all roots 

of Equation (1.1). 

The formulated statements can be proved starting from the following 

considerations: 

1) In the table (1.5), constructed for the numbers &, &, . . . . p,, 
all nodal numbers, appearing in the last F columns, appear in the last 

(lowest) r lines; in the cases (a), (b), (cl) there will be only one 

such nodal number; 

2) The rth line, counting from the bottom, contains the nodal number 

Us', which gives the smallest of all permissible (smaller than S) power 

exponents. 

Note. Since Us' represents the largest number in the rth line, count- 

ing from the bottom of the table we have 

urn’ > (4 - qr) 1 F - S 

For the root corresponding to this number we consequently have 

s(u) = as'~-s>acq-W 

In the cases (a), (b) and (cl) we have ss' = sM'; and the asymptotic 

error 

E(a)=aGn-s __as'M-s 
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is to be computed from the formulas (2.51, (2.6) and (2.7). In the case 
fc2) we have ss’ < syf, and for the roots corresponding to ss’ we obtain 

because 

s (a) =I d’m--S > u(4~-~)/r 

U,’ > (42 - q) I r - s 

3. The fundamental formulas in the second approximation. 
We shall deal here with the formulas for the mth term of the expansion 
into a series for the case of a state of Stress and strain symnetrical 
with respect to the generator f3 = 0 of a circular cylindrical shell. To 

this end we set @ = (p cos me. By virtue of (0.5) Q, = Aeke cos me. Sub- 
stituting @into the relations (0.1) we will have 

u = AP, (k, m) eke cos m0, v= AQ” (k, m) ekE sin mO, 
w = AQ,,, (k, m) ekE cos m0 

Analogous formulas are obtained for I’,, T2* S,, S,, and so forth, with 

p, = h,m2k + ?,,ok3 + a2 - h,, (I $- T’L26s ‘) m2k3 -i_ 
[ 

+ hl, k>z m4k + 4ok3 - $$ m2k 1 

Q. = h,m3 - h2 (2 $ a) mk2 -/- a2 [h3 2 ffzz) mk4 - 

_ h 
14 

-4 - @a + 6% 
I-6 

msk2 f h14m5 
I 

Qw = &kg- 2h6m2k2 + &,m4 f a2 
I 
4k:4 - 2 (2 I”,” @)_ m2k2 + ma] 

QT, = -= (h, r?i - r(i-0%) lr2) m2k2 -j- a2 [--I,3 (2 - (T) m2k4 + 

+ hla (1 - o)~ m4k2 + horn6 + 2Gm’k” -0m~1) 

QT+@~ (- hi (1 - a2) k4 +- a2 [3\14 (4 - a2) m2k4 - 

- 4h14 m4k2 -+ hlsrn” - 4 (1 - ~9) k4 + 4m2k2 - bm41) 

Ps, = - ~ c,fFosI (A7 (1 - a2) mh s3 -t_ a2 f - h3mk5 - h14 (1 - a”) m3k3 -i- 

+ k14rnjk + (1 - o) (2 + 30) mk3 - m3kl + a4 lo (1 -a) m3k3 - 2omF’l) 

Psp= - ~ ffzzGa, {- h, (1 - 02) mk3 f- a2 [b (2 - CT) mk5 - 
(3.1) 

- h14 (1 - G)~ m3k3 - h14orrc~k: - 2a (1 - 6) mk3 + om3kl) 

QG~ = - +$_i2 {h4k6 - h10 (2 + o) m2k4 + iill (1 + 2~) m4k2 - born’ - 

- (J (2 i_ a) m2k2 + &om4 + a2 i4k6 - 4m2k4 + (1 - 8) m4k21} 
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QGs = - & us (1L(*0k6 - hlrJ (1 + 2a) m2lcP i_ All (2 + a) m4kZ - hsm” - 

- (2 + a) m2kZ + hem4 + a2 [40ka - 20 (1 - CT) m2k41} 

PN, = - ~ (,y& a2 {hak7 - 3hlom2k” + 3h13m4k3 - hem6k - 

- (2 + a) m2k3 -t ?~e.=x~k + a2 [4k7 - 2 (2 - CI) m2k5 + (1 - CT) m4k31} 

h’, = r (rsz, a2 (h4mk6 - 3hlom3h” + 3hm5k2 - hsm7 + 

+ Al5 (1 - o) (2 + a) mk4 - 3m3k2 + hsmj + a2 [2amke - cr (1 - CT) mak41} 

In these formulas all Xi = 1 for any i. They are used here in the 
interest of convenience of presentation. 

Let us study the question of approximate representation of the quan- 
tities (3.1). To this end we shall use the method described in Section 1 
with reference to the process of solving Equation (0.6). Three cases are 
to be considered: p < l/Z; p = l/Z; ,U > l/Z. 

1. Take the case 0 < p < l/2. Table (1.5), constructed for the equa- 
tion under study, will have two nodal numbers U= U, = l/2 and 

u= uz =2/t - l/2. 

a) Suppose U = II, = l/2. Then 

(i = 1, 2, 3, 4) (3.2) 

The limiting equation for determination of Ki is of the form 

128 + (1 --oa)IP =O 

Dividing by K” and returning to (k), we obtain the equation 

(k)14 -I- (1 - a2) I a2 = 0 (3.3) 

from which we determine the four roots of Equation (0.6) in first 
approximation. Since the roots of this equation are non-repeated, their 
asymptotic error is determined by the formula (2.5): 

a (a) = alm2t* (3.4) 

By virtue of the relations (0.4), (3.2) and (3.4) the formulas (3.1) 
can be simplified fl I, in consequence of which only such terms remain 
in them which contain A,, A, and A, (with k replaced by (k),). ‘Ihe 
asymptotic error for the simplified formulas is expressed by 
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Equation (3.4). 

To improve the accuracy of these formulas we shall find the second 
approximation for the four roots of Equation (0.61 considered. For this 
purpose we replace k by (k), + k’ in Equation (0.6) and, using the same 
method, we find for k’ its first approximation (k’), from the limiting 
equation 

(k)l (k’)~ - m2 = 0 

(the coefficient of k’ is simplified on the basis of Equation (3.3) and 
the equation is divided by (kJ16). ‘Ibis gives the expression 

for the root and the formula 

&’ (a) = a2_4Y (3.5) 

for its asymptotic error. Substituting (k) I + (k’J 1 for k into the form- 
ulas (3.1), we omit the terms whose asymptotic error does not exceed 
(3.5). 

Then the terms of the first approximation will be amplified by the 
terms with X,, X,, h,, linear with respect to (k’),, as well as by terms 

with A,, X,, A,, A10,h15,free of (k’),, which we can write down symbol- 
ically in the following manner: 

&, J%, A,; h I@,, A,, A,) (0, A,, h, b, LJ, &I) (3.6) 

For example, Pa = a(kll 3 + A[ 30(k),2k’), + m2(k)J. Here we hav 
X = 0 for the first and X = 1 for the second approximation. 

Since, in general, the theory of thin shells itself involves errors 
of the order a, the question of retaining in the formulas of analysis 
such terms, which are of the order a as compared with the main terms, 
requires additional study. This question will not be discussed here and 
the terms indicated are everywhere omitted. 

Accordingly, we shall omit the terms with X3 and Xl5 in the formulas, 
which correspond to the scheme (3.6), and in the case ~1 = 0 we shall 
disregard in addition all other terms of the second approximation. In 
this way we obtain (with A = 0 when TV = 01 the formulas 

{hz, h4, h7; h l(h2, h4, h7) (k’)l, AI, A5, LoI) (3.7) 

and the error is 
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a2-4p 

E’ (a) = 

when $ < p < -$ 

a when O\(p<,<$ 

The accuracy of the formulas (3.7) can be improved in an analogous 
manner. ‘Ihis does not offer any fundamental difficulties, and we shall 
not discuss here or in the sequel the derivation of the third approxima- 
tion. 

b) Suppose II = II, = 2c( - l/2; then, as in the preceding case, we ob- 
tain, if p f 0, for-the remaining four roots of Equation (0.6) 

(1 - a2) (k)14 + a%P = 0, ki z (i&)1 = Kia’~~-2~ (i = 5, 6,7,8) 

1 

azp when O<p<$ 

E (a) = alIz when n = $ 

a1-2!J. when $<p <$- 

1) If 0 < /f < l/4 

2 I$ (k)r3 (k’), - = ki z Kia’lz-2P + Ki’a1/2 

&’ (a) Tzz a% 

1 

a4y when O<P<$ 

when .u = $ 

a?--2p when $ < p < $ 

{hl, h6, h7; h [(Al, b, h7) (k')l, b, b61) 

2) If l/4 < p < l/2 

y(k), (k’), - m6 = 0, ki z Kia’i~-21* + K’ia%-4P 

a2p when $<p<+ 

s’(a) = a*‘* 

I 

when p = $ 

a2-4~ when f<p<< 

(111, h6, h7; h @I, h6, A,) (k’)l, AZ, h5, All, h31) 

3) If I” = l/4 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

2 !Zj$ (Je)13 (Z)l - 2m6 (k)f - me = 0, ki z Kid/*-*& + K~‘u”z 

E’ (a) = a 

{AI, ie, h,; h [(AI, ?b6, h7) (k’)l, h, &a, b, All, b hd 
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'Ihese formulas can be used also in the case of g f l/4 in the vicinity 

of the point p = l/4 (where for them c'(s) = a) instead of the formulas 

(3.10) and (3.12), which give in this case the larger errors (3.9) and 

(3.11). 

If p = 0, then the four roots considered are ki = 0, as can be seen 
from Equation (0.6) and from the limiting equation 

!g(k)14 + mym2 - I)2 = 0 (3.13) 

In this case 

0 = (Bo + BIE + Bzk2 + B3t3) cos m0 (Bi= const) 

Equation (3.13) can be used, however,also for cc f 0 in the vicinity 

of the point ~1 = 0. It leads in this case to the small roots of Equation 

(0.6) with a higher degree of accuracy than Equation (3.9), because 
,a z In6 = m4 in the case of small ,u. 

In the case of small values of /J we have ~(a) = CX~-'~ = u for Equa- 

tion (3.13), therefore we are not looking for higher accuracy of the 

first approximation formula iA,, A,, A,, A,, A,, X1,1. 

2. Consider the case p = l/2. We have then U= l/2 

[(k)12 - m214 + ‘+ (k)14 = 0, 8 (a) = a 

Since r(a) = a, it is not necessary to improve the accuracy of 

iA,, '2, ',, '5, '6, ',, ',,V x 11' A,,). These formulas can be used also 

in the vicinity of the point ,u = l/2, since they produce a smaller error 

than (3.7), (3.12) and (3.14). 

3. Let p > l/2. Then U = p 

ki z Kia-p, [(k)l” - m214 = 0 

The limiting equation gives two quadruple roots. Since all I, f 0 
in the relation (2.1), established for Equation (0.6), the asymptotic 

error is determined in the case under consideration by the formula (2.6), 

and this leads to 

i 

ap*-1f2 when $-<p< 1 

s(a) -= aX,p when p>l 

([l I gives here instead the formula C(U) = a-%-' = a4p' 2 without 

upper limit for m). We find there, furthermore, for large values of m 
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(III > a- , ‘i2) in first approximation the formulas 

{Al, ?a, h4, h5, he, h7, ho, hll, hl3) (3.14) 

without indication of the domain of their applicability; they are correct 
for l/2 < p < S/6. For S/6 < p < S/4 the formulas become somewhat more 
involved; they assume the form 

{Al, h2, h3,.h4, Id, ?be, y7, ho, All, hl3, h14, hl6) 

For S/4 < p < m we obtain 

{A,, A149 h6) 

'Ihe question of raising the accuracy of these formulas will not be 
discussed here. 

Having pi, ui, ui’ and so forth, for each root ki of the character- 
istic equation, we obtain 

u = i AiPui (ki, m) ekiE cos m0 etc., 
i=l 

In an analogous manner we can raise the accuracy of the formulas 
analysis of open shells as well by exapnding @ into a trigonometric 
series in terms of the variable 5‘. 
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